Microstructures Self-Assemble into New Materials
03-03-20
A new process developed at Caltech makes it possible for the first time to manufacture large quantities of materials whose structure is designed at a nanometer scale—the size of DNA's double helix. Pioneered by Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, "nanoarchitected materials" exhibit unusual, often surprising properties—for example, exceptionally lightweight ceramics that spring back to their original shape, like a sponge, after being compressed. Now, a team of engineers at Caltech and ETH Zurich have developed a material that is designed at the nanoscale but assembles itself—with no need for the precision laser assembly. "We couldn't 3-D print this much nanoarchitected material even in a month; instead we're able to grow it in a matter of hours," says Carlos M. Portela, Postdoctoral Scholar. "It is exciting to see our computationally designed optimal nanoscale architectures being realized experimentally in the lab," says Dennis M. Kochmann, Visiting Associate. [Caltech story]
Tags:
APhMS
research highlights
GALCIT
MedE
MCE
Julia Greer
KNI
Dennis Kochmann
postdocs
Carlos Portela
Ultrasound Can Selectively Kill Cancer Cells
02-05-20
Michael Ortiz, Frank and Ora Lee Marble Professor of Aeronautics and Mechanical Engineering, Emeritus, and Morteza Gharib, Hans W. Liepmann Professor of Aeronautics and Bioinspired Engineering; Booth-Kresa Leadership Chair, Center for Autonomous Systems and Technologies; Director, Graduate Aerospace Laboratories; Director, Center for Autonomous Systems and Technologies, are exploring a new technique that could offer a targeted approach to fighting cancer. Low-intensity pulses of ultrasound have been shown to selectively kill cancer cells while leaving normal cells unharmed. In the past, ultrasound waves have been used as a cancer treatment with high-intensity bursts resulting in killing cancer and normal cells. [Caltech story]
Tags:
APhMS
research highlights
GALCIT
MedE
MCE
Morteza Gharib
Michael Ortiz
Bionic Jellyfish Swim Faster and More Efficiently
01-30-20
John Dabiri, Centennial Professor of Aeronautics and Mechanical Engineering, has developed a tiny prosthetic that enables jellyfish to swim faster and more efficiently than they normally do, without stressing the animals. Dabiri is envisioning a future in which jellyfish equipped with sensors could be directed to explore and record information about the ocean. "Only five to 10 percent of the volume of the ocean has been explored, so we want to take advantage of the fact that jellyfish are everywhere already to make a leap from ship-based measurements, which are limited in number due to their high cost," Dabiri says. "If we can find a way to direct these jellyfish and also equip them with sensors to track things like ocean temperature, salinity, oxygen levels, and so on, we could create a truly global ocean network where each of the jellyfish robots costs a few dollars to instrument and feeds themselves energy from prey already in the ocean." [Caltech story]
Tags:
research highlights
GALCIT
MCE
John Dabiri
Bees "Surf" Atop Water
11-20-19
Chris Roh, Research Engineer, working with Professor Morteza Gharib, discovered a unique way that bees navigate the interface between water and air. When a bee lands on water, the water sticks to its wings, robbing it of the ability to fly. However, that stickiness allows the bee to drag water, creating waves that propel it forward."I was very excited to see this behavior and so I brought the honeybee back to the lab to take a look at it more closely," Roh says. [Caltech release]
Tags:
research highlights
GALCIT
Morteza Gharib
Chris Roh
Professor Gharib Constructs Leonardo da Vinci's Model of Flow
07-16-19
Leonardo da Vinci studied the motion of blood in the human body. He was interested in the heart’s passive, three-cusp aortic valve, which he realized must be operated by the motion of blood. He theorized that vortices curl back to fill the cusps in the flask-shaped constriction at the aorta’s neck. Morteza Gharib, Hans W. Liepmann Professor of Aeronautics and Bioinspired Engineering; Booth-Kresa Leadership Chair, Center for Autonomous Systems and Technologies; Director, Graduate Aerospace Laboratories; Director, Center for Autonomous Systems and Technologies, has used modern imaging techniques to demonstrate the existence of the revolving vortices that Leonardo interpreted as closing the valve. [Nature Article]
Tags:
research highlights
GALCIT
MedE
Morteza Gharib
"Neural Lander" Uses AI to Land Drones Smoothly
05-23-19
Professors Chung, Anandkumar, and Yue have teamed up to develop a system that uses a deep neural network to help autonomous drones "learn" how to land more safely and quickly, while gobbling up less power. The system they have created, dubbed the "Neural Lander," is a learning-based controller that tracks the position and speed of the drone, and modifies its landing trajectory and rotor speed accordingly to achieve the smoothest possible landing. The new system could prove crucial to projects currently under development at CAST, including an autonomous medical transport that could land in difficult-to-reach locations (such as a gridlocked traffic). "The importance of being able to land swiftly and smoothly when transporting an injured individual cannot be overstated," says Professor Gharib who is the director of CAST; and one of the lead researchers of the air ambulance project. [Caltech story]
Tags:
research highlights
Morteza Gharib
Yisong Yue
Soon-Jo Chung
Animashree Anandkumar
Engineers Taught a Drone to Herd Birds Away From Airports
08-08-18
Soon-Jo Chung, Associate Professor of Aerospace and Bren Scholar; Jet Propulsion Laboratory Research Scientist, and colleagues have developed a new control algorithm that enables a single drone to herd an entire flock of birds away from the airspace of an airport. The effectiveness of the algorithm is only limited by the number and size of the incoming birds, Professor Chung says, adding that the team plans to explore ways to scale the project up for multiple drones dealing with multiple flocks. [Caltech story]
Tags:
research highlights
GALCIT
Soon-Jo Chung