News & Events


Condensed Matter Physics Inspires a New Model of Cellular Behavior


Inspired by the mechanics of a phase of matter called liquid crystals, researchers have developed the first three-dimensional model of a layer of cells and the extrusion behavior that emerges from their physical interactions. From this new model, the team discovered that the more a cell is squeezed by its neighbors in a particular symmetric way, the more likely it is to get extruded from the group. [Caltech story]

Tags: research highlights GALCIT MCE Jose Andrade Guruswami Ravichandran

Leonardo da Vinci's Forgotten Experiments Explored Gravity as a Form of Acceleration


Engineers from Caltech have discovered that Leonardo da Vinci's understanding of gravity—though not wholly accurate—was centuries ahead of his time. In an article published in the journal Leonardo, the researchers draw upon a fresh look at one of da Vinci's notebooks to show that the famed polymath had devised experiments to demonstrate that gravity is a form of acceleration—and that he further modeled the gravitational constant to around 97 percent accuracy. [Caltech Story]

Tags: research highlights GALCIT Morteza Gharib

Beaming Clean Energy From Space


Once considered science fiction, technology capable of collecting solar power in space and beaming it to Earth to provide a global supply of clean and affordable energy is moving closer to reality. Through the Space-based Solar Power Project (SSPP), a team of Caltech researchers is working to deploy a constellation of modular spacecraft that collect sunlight, transform it into electricity, then wirelessly transmit that electricity wherever it is needed—including to places that currently have no access to reliable power. "This is an extraordinary and unprecedented project," says Harry Atwater, Otis Booth Leadership Chair, Division of Engineering and Applied Science; Howard Hughes Professor of Applied Physics and Materials Science; Director, Liquid Sunlight Alliance. "It exemplifies the boldness and ambition needed to address one of the most significant challenges of our time, providing clean and affordable energy to the world." [Caltech story]

Tags: APhMS EE research highlights MedE MCE Harry Atwater Ali Hajimiri Sergio Pellegrino

Tweaking Turbine Angles Squeezes More Power Out of Wind Farms


A new control algorithm for wind farms that alters how individual turbines are oriented into the wind promises to boost farms' overall efficiency and energy output by optimizing how they deal with their turbulent wake. "Individual turbines generate choppy air, or a wake, which hurts the performance of every turbine downwind of them," says John O. Dabiri, Centennial Professor of Aeronautics and Mechanical Engineering. "To cope with that, wind farm turbines are traditionally spaced as far apart as possible, which unfortunately takes up a lot of real estate." [Caltech story]

Tags: research highlights GALCIT MCE John Dabiri alumni Michael Howland

Improving Aircraft Design with Machine Learning and a More Efficient Model of Turbulent Airflows


Turbulent airflows are chaotic and unpredictable: consider the bumps and jolts one might experience during an airplane flight encountering turbulent air. With increased knowledge of turbulent airflows, airplane designs could become safer, more resilient, and ultimately more fuel efficient.  H. Jane Bae, Assistant Professor of Aerospace, has developed a way to use machine learning to further improve the design process. [Caltech story]

Tags: research highlights GALCIT H. Jane Bae

Lab Earthquakes Show How Grains at Fault Boundaries Lead to Major Quakes


By simulating earthquakes in a lab, Caltech engineers have provided strong experimental support for a form of earthquake propagation now thought responsible for the magnitude-9.0 earthquake that devastated the coast of Japan in 2011. "Our novel experimental approach has enabled us to look into the earthquake process up close, and to uncover key features of rupture propagation and friction evolution in rock gouge," says Vito Rubino, research scientist and lead author of the Nature paper. The Nature paper is titled "Intermittent lab earthquakes in dynamically weakening fault gouge." Rubino and his co-authors Nadia Lapusta, Lawrence A. Hanson, Jr., Professor of Mechanical Engineering and Geophysics, and Ares Rosakis, Theodore von Kármán Professor of Aeronautics and Mechanical Engineering, show that so-called "stable" or "creeping" faults are not actually immune to major ruptures after all, as previously suspected. [Caltech story]

Tags: research highlights GALCIT MCE Ares Rosakis Nadia Lapusta Vito Rubino

The 2022 Caltech Space Challenge—to Titan and Back


Titan, Saturn's largest moon, is the only planetary body in our solar system besides Earth where there is clear evidence of surface liquid. This is an essential element to life as we know it and makes Titan a prime target in the search for extraterrestrial life. Two teams of 16 space exploration enthusiasts, including five Caltech students along with university students from around the globe, were given five days to design an autonomous mission to collect three different samples from Titan. [Caltech story]

Tags: research highlights Brit Wylie Maximilian Adang Lucas Pabarcius Liam Heidt Josefine Graebener Eric Smith Theresa Marlin

Rapid Adaptation of Deep Learning Teaches Drones to Survive Any Weather


To be truly useful, drones—that is, autonomous flying vehicles—will need to learn to navigate real-world weather and wind conditions. A team of engineers from Caltech has developed Neural-Fly, a deep-learning method that can help drones cope with new and unknown wind conditions in real time just by updating a few key parameters. [Caltech story]

Tags: research highlights GALCIT CMS Yisong Yue Soon-Jo Chung Animashree Anandkumar Xichen Shi Guanya Shi Michael O'Connell Kamyar Azizzadenesheli

What Is the Future of Wind Energy?


Humans have used windmills to capture the force of the wind as mechanical energy for more than 1,300 years. Unlike early windmills, however, modern wind turbines use generators and other components to convert energy from the spinning blades into a smooth flow of AC electricity. In this video, John Dabiri, Centennial Professor of Aeronautics and Mechanical Engineering discusses the future of wind energy technology. [Caltech story]

Tags: research highlights GALCIT MCE John Dabiri

Gunnarson and Dabiri Teach AI to Navigate Ocean with Minimal Energy


Engineers at Caltech, ETH Zurich, and Harvard are developing an artificial intelligence (AI) that will allow autonomous drones to use ocean currents to aid their navigation, rather than fighting their way through them. "When we want robots to explore the deep ocean, especially in swarms, it's almost impossible to control them with a joystick from 20,000 feet away at the surface. We also can't feed them data about the local ocean currents they need to navigate because we can't detect them from the surface. Instead, at a certain point we need ocean-borne drones to be able to make decisions about how to move for themselves," says John Dabiri, Centennial Professor of Aeronautics and Mechanical Engineering. [Caltech story]

Tags: research highlights GALCIT MCE John Dabiri Peter Gunnarson