Beverley J. McKeon
Theodore van Karman Professor of Aeronautics
Research Overview
Professor McKeon explores new ways to manipulate or control the boundary layer—the thin layer between a material and flowing air—to improve flow characteristics, such as a reduction of drag, noise, and structural loading or expansion of vehicle performance envelopes during travel. The unifying theme to her work is an experimental and theoretical approach at the intersection of fluid mechanics, control, and materials science to investigate fundamental flow questions, address efficiency and performance challenges in aerospace vehicle design, and respond to the energy conservation imperative in novel and efficient ways.
Specific interests include:
Modeling and control of wall-bounded flows using smart, morphing surfaces. Resolvent analysis as a tool for modeling turbulent, transitional and controlled flows; rigorous, system-level tools for understanding flow physics and design of flow control schemes. Assimilation of experimental data for efficient low-order flow modeling.
Measurement, definition and description of high Reynolds number wall turbulence. Interdisciplinary approaches to experimental flow manipulation for performance enhancement and understanding of fundamental flow physics; application of new materials to flow control.